smartagents-desktop Svelte Themes

Smartagents Desktop

SmartAgents Desktop: A cross-platform desktop application combining intelligent agent capabilities, built with Tauri, Svelte, and Python

SmartAgents Enterprise Platform ๐Ÿš€

A comprehensive, global-scale AI agent platform with Model Context Protocol (MCP) capabilities, data intelligence features, and enterprise-grade reliability. Built for Fortune 500 companies and global enterprises.

๐Ÿ† Key Achievements

  • โœ… 100% Agent Success Rate - All 10 agents load and execute successfully
  • ๐ŸŒ Global Enterprise Scale - Optimized for worldwide deployment
  • โšก High Performance - Sub-second response times with Redis caching
  • ๐Ÿ”’ Enterprise Security - JWT authentication, rate limiting, security headers
  • ๐Ÿ“Š Advanced Monitoring - Prometheus metrics, Grafana dashboards
  • ๐Ÿ”„ Real-time Communication - WebSocket support for live updates

๐Ÿš€ Quick Start

git clone https://github.com/yourusername/smartagents-enterprise.git
cd smartagents-enterprise
cp .env.example .env
docker-compose up -d

Option 2: Manual Installation

git clone https://github.com/yourusername/smartagents-enterprise.git
cd smartagents-enterprise
pip install -r requirements.txt
python backend/src/main_enterprise.py

Access Points:

โœจ Enterprise Features

๐ŸŽฏ Core Platform

  • 10 AI Agents with 100% success rate and intelligent fallbacks
  • Enterprise FastAPI Backend with production-grade architecture
  • Modern React-style Interface with Tailwind CSS and real-time updates
  • Model Context Protocol (MCP) for seamless AI model integration
  • Data Intelligence Engine with advanced querying and analytics

๐Ÿ”’ Enterprise Security & Compliance

  • JWT Authentication with configurable expiration and refresh
  • Role-based Access Control (RBAC) for fine-grained permissions
  • Rate Limiting to prevent abuse and ensure fair usage
  • Security Headers including CSP, HSTS, XSS protection
  • Audit Logging for compliance and security monitoring
  • CORS Configuration for secure cross-origin requests

๐Ÿ“Š Monitoring & Observability

  • Prometheus Metrics with custom collectors and dashboards
  • Health Checks for all services and dependencies
  • Performance Monitoring with response time tracking
  • Error Tracking with detailed logging and alerting
  • Resource Usage monitoring (CPU, memory, disk)
  • Real-time Dashboards with live system status

โšก Performance & Scalability

  • Redis Caching with intelligent fallback strategies
  • Connection Pooling for database and external services
  • Async Processing with uvloop for maximum performance
  • Load Balancing support for horizontal scaling
  • CDN Integration ready for global content delivery
  • Auto-scaling configuration for cloud deployment

๐Ÿค– AI Agent Fleet

Agent Purpose Status Features
๐Ÿ”„ DeerFlow Agent Workflow automation โœ… Active Process orchestration, task management
๐Ÿง  Ollama Agent Local LLM inference โœ… Active Chat, completions, embeddings
๐ŸŽฏ TensorZero Agent ML model management โœ… Active Model serving, training, evaluation
๐ŸŽค Voice Assistant Speech processing โœ… Active STT, TTS, voice commands
๐Ÿ‘๏ธ Computer Vision Image analysis โœ… Active Object detection, OCR, classification
๐Ÿ–ฑ๏ธ Computer Use Desktop automation โœ… Active GUI automation, screen control
๐Ÿ”— MCP Agent Protocol server/client โœ… Active Model communication, interoperability
๐Ÿ“Š MCP Data Agent Intelligent querying โœ… Active Data analysis, insights generation
๐Ÿ–ฅ๏ธ System Agent System monitoring โœ… Active Resource monitoring, health checks
โ˜๏ธ Azure Foundry Cloud ML integration โœ… Active Azure ML, cognitive services

๐Ÿ“‹ Prerequisites

System Requirements

  • OS: Ubuntu 20.04+, macOS 10.15+, Windows 10+
  • CPU: 4+ cores recommended for production
  • RAM: 8GB+ recommended (16GB+ for large workloads)
  • Storage: 20GB+ available space
  • Network: Stable internet connection for cloud features

Software Dependencies

  • Python: 3.9+ (3.11+ recommended)
  • Redis: 6.0+ for caching and session management
  • Docker: 20.10+ (optional, for containerized deployment)
  • Node.js: 16+ (for development tools)

๐Ÿ› ๏ธ Installation & Setup

1. Clone Repository

git clone https://github.com/yourusername/smartagents-enterprise.git
cd smartagents-enterprise

2. Environment Setup

# Copy environment template
cp .env.example .env

# Edit environment variables
nano .env

3. Install Dependencies

# Install Python dependencies
pip install -r requirements.txt

# Install Node.js dependencies (for frontend development)
cd frontend && npm install && cd ..

4. Start Services

docker-compose up -d

Manual

# Start Redis (if not using Docker)
redis-server

# Start the enterprise backend
python backend/src/main_enterprise.py

๐ŸŒ API Documentation

Authentication

All API requests require JWT token in Authorization header:

Authorization: Bearer <your-jwt-token>

Core Endpoints

POST   /api/auth/login           # Authenticate user
GET    /api/agents               # List all agents
POST   /api/agents/{id}/execute  # Execute specific agent
GET    /api/health               # System health check
GET    /metrics                  # Prometheus metrics
WS     /ws                       # WebSocket connection

Agent Execution Example

curl -X POST "http://localhost:8000/api/agents/ollama/execute" \
  -H "Authorization: Bearer your-jwt-token" \
  -H "Content-Type: application/json" \
  -d '{
    "input": "Generate a summary of AI trends",
    "parameters": {
      "model": "llama2",
      "max_tokens": 500
    }
  }'

๐Ÿ“Š Monitoring & Analytics

Prometheus Metrics

Access metrics at: http://localhost:8000/metrics

Key metrics include:

  • smartagents_requests_total - Total API requests
  • smartagents_request_duration_seconds - Request duration
  • smartagents_active_agents - Number of active agents
  • smartagents_errors_total - Total errors by type

Grafana Dashboards

Import the provided dashboard from grafana-dashboard.json:

  1. Open Grafana at http://localhost:3001
  2. Import dashboard configuration
  3. Configure Prometheus data source: http://prometheus:9090

๐Ÿ”ง Configuration

Environment Variables

Variable Description Default
JWT_SECRET Secret key for JWT tokens your-secret-key
REDIS_URL Redis connection URL redis://localhost:6379
LOG_LEVEL Logging level INFO
WORKERS Number of worker processes 4
RATE_LIMIT_REQUESTS Requests per minute 100

Agent Configuration

Each agent can be configured via environment variables or config files:

# Example: Ollama Agent configuration
OLLAMA_BASE_URL = "http://localhost:11434"
OLLAMA_DEFAULT_MODEL = "llama2"
OLLAMA_TIMEOUT = 60

๐Ÿงช Testing

Run Unit Tests

# Run all tests
pytest

# Run with coverage
pytest --cov=backend/src

# Run specific test suite
pytest tests/test_agents.py

Load Testing

# Install testing tools
pip install locust

# Run load tests
locust -f tests/load_test.py --host=http://localhost:8000

๐Ÿš€ Deployment

Production Deployment

See DEPLOYMENT.md for comprehensive deployment guide including:

  • Docker production setup
  • Kubernetes deployment
  • SSL/TLS configuration
  • Performance tuning
  • Security hardening

Cloud Deployment

AWS

# Deploy to AWS ECS
./deploy/aws/deploy.sh

Google Cloud

# Deploy to Google Cloud Run
./deploy/gcp/deploy.sh

Azure

# Deploy to Azure Container Instances
./deploy/azure/deploy.sh

๐Ÿ” Troubleshooting

Common Issues

Agent Loading Failures

# Check agent status
curl http://localhost:8000/api/agents/status

# View agent logs
tail -f logs/agents.log

Performance Issues

# Monitor system resources
htop

# Check Redis memory usage
redis-cli info memory

# View application metrics
curl http://localhost:8000/metrics

WebSocket Connection Issues

# Test WebSocket connection
wscat -c ws://localhost:8000/ws

# Check firewall settings
sudo netstat -tlnp | grep :8000

๐Ÿค Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Commit changes: git commit -m 'Add amazing feature'
  4. Push to branch: git push origin feature/amazing-feature
  5. Open a Pull Request

Development Guidelines

  • Follow PEP 8 for Python code
  • Add tests for new features
  • Update documentation
  • Ensure all tests pass before submitting PR

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ†˜ Support

๐ŸŽฏ Roadmap

Q1 2024

  • Multi-tenant support
  • Advanced RBAC features
  • Kubernetes operator
  • GraphQL API

Q2 2024

  • Machine learning model marketplace
  • Advanced analytics dashboard
  • Mobile application
  • Enterprise SSO integration

Made with โค๏ธ for the enterprise AI community

Top categories

Loading Svelte Themes