SVELTE Logo

SVELTE Framework

Symbolic Vector Entropy & Latent Tensor Excavation


Advanced Model Analysis & Interpretability Suite for Neural Language Models
Non-destructive extraction and interpretation of computational structures from quantized language models

πŸ“ Table of Contents

🧐 About

SVELTE (Symbolic Vector Entropy & Latent Tensor Excavation) is a comprehensive framework for analyzing and interpreting neural language models through non-destructive tensor analysis. The framework extracts symbolic computational structures from quantized models, enabling deep understanding of model internals through entropy analysis, symbolic mapping, and multi-dimensional visualization.

Built on axiomatic foundations of latent symbolic encoding and structural invariance, SVELTE provides researchers and practitioners with tools to excavate the hidden computational archaeology of modern language models.

πŸš€ Features

Core Analysis Modules

  • Tensor Excavation: Non-destructive extraction of complete tensor structures from GGUF/GGML models
  • Entropy Analysis: Multi-dimensional information entropy mapping and semantic density analysis
  • Symbolic Mapping: Transformation of numeric patterns into interpretable symbolic representations
  • Attention Topology: Differential geometric analysis of attention mechanisms
  • Memory Pattern Recognition: Identification of recurring computational motifs and structures

Advanced Capabilities

  • Interactive Visualization: Multi-scale cognitive cartography with WebGL-accelerated rendering
  • Cross-Model Comparison: Comparative analysis across different architectures and sizes
  • Quantization Preservation: Analysis that maintains fidelity to original quantized representations
  • Regulatory Compliance: Automated documentation generation for safety and compliance review
  • Intervention Planning: Targeted modification strategies for model behavior adjustment

Deployment Options

  • Single-Node: Workstation deployment for smaller models
  • Distributed: Cluster-based analysis for large-scale models
  • Cloud-Native: Container-based microservices with auto-scaling
  • Hybrid: Edge preprocessing with cloud-based deep analysis

🏁 Getting Started

Prerequisites

Hardware Requirements:

  • Minimum: 16-core CPU, 64GB RAM, 8GB VRAM
  • Recommended: 32-core CPU, 128GB RAM, 24GB VRAM
  • Storage: NVMe SSD with 2GB/s+ speeds, 5-10x model size available

Software Dependencies:

Python 3.8+
PyTorch 2.0+
NumPy 1.20+
SciPy 1.7+
Plotly 5.5+

Installation

  1. Clone the repository:
git clone https://github.com/svelte-framework/svelte.git
cd svelte
  1. Install dependencies:
pip install -r requirements.txt
  1. Install SVELTE framework:
pip install -e .
  1. Verify installation:
python main.py --help

🎈 Usage

Command Line Interface

Full Pipeline Analysis:

python main.py --model models/your-model.gguf --pipeline --output results/

Selective Module Analysis:

python main.py --model models/your-model.gguf --modules parser,entropy,symbolic --headless

Interactive Mode:

python main.py
# Follow interactive prompts to select models and analysis options

Python API

from src.gguf_diagnostic_scanner import main as pipeline_main
from src.tensor_analysis.gguf_parser import GGUFParser
from src.tensor_analysis.entropy_analysis import EntropyAnalysisModule

# Parse model
parser = GGUFParser("path/to/model.gguf")
parser.parse()

# Analyze entropy
entropy_module = EntropyAnalysisModule(parser.tensor_field)
entropy_maps = entropy_module.compute_entropy()

# Run full pipeline
pipeline_main()

Web Interface

Start the web server:

python main.py serve --port 8080

Navigate to http://localhost:8080 for interactive analysis.

πŸ—οΈ Architecture

Core Processing Pipeline

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Tensor         β”‚    β”‚  Entropy        β”‚    β”‚  Symbolic       β”‚
β”‚  Excavation     │───▢│  Analysis       │───▢│  Mapping        β”‚
β”‚  Module (TEM)   β”‚    β”‚  Module (EAM)   β”‚    β”‚  Module (SMM)   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚                       β”‚                       β”‚
         β–Ό                       β–Ό                       β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Cognitive      β”‚    β”‚  Meta-          β”‚    β”‚  Attention      β”‚
β”‚  Cartography    β”‚    β”‚  Interpretation β”‚    β”‚  Topology       β”‚
β”‚  Module (CCM)   β”‚    β”‚  Module (MISM)  β”‚    β”‚  System (ATS)   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Module Specifications

  • TEM: GGUF parser, tensor field constructor, quantization reconstructor
  • EAM: Multi-dimensional entropy calculator, gradient field generator
  • SMM: Computational grammar extractor, pattern recognition engine
  • CCM: Interactive visualization, attention curvature mapping
  • MISM: Cross-module integration, reasoning chain reconstruction

πŸ“š API Reference

REST API Endpoints

GET    /api/v1/models                 # List available models
POST   /api/v1/models                 # Upload new model
GET    /api/v1/models/{id}/analyze    # Start analysis
GET    /api/v1/analyses/{id}/status   # Check analysis status
GET    /api/v1/analyses/{id}/results  # Retrieve results
GET    /api/v1/symbols                # Access pattern library
POST   /api/v1/visualizations         # Generate visualization

Configuration Options

# analysis.yaml
analysis:
  modules: [parser, entropy, symbolic, attention]
  resolution: 512
  threads: 0  # auto-detect
  memory_limit: 0  # auto-detect
  output_format: [json, visualization, report]
  
visualization:
  engine: plotly
  interactive: true
  dimensions: 3
  color_scheme: viridis

🀝 Contributing

We welcome contributions! Please see our Contributing Guidelines for details.

Development Setup

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Install development dependencies: pip install -r requirements-dev.txt
  4. Run tests: pytest tests/
  5. Commit changes: git commit -m 'Add amazing feature'
  6. Push to branch: git push origin feature/amazing-feature
  7. Open a Pull Request

Code Style

  • Follow PEP 8 style guidelines
  • Use type hints for function signatures
  • Include docstrings for all public functions
  • Maintain test coverage above 80%

πŸ“– Documentation

⛏️ Built Using

  • PyTorch - Tensor Operations & Neural Network Framework
  • NumPy - Numerical Computing Foundation
  • SciPy - Scientific Computing Library
  • Plotly - Interactive Visualization Engine
  • FastAPI - Modern Web API Framework
  • React - Frontend User Interface
  • D3.js - Data-Driven Visualization
  • WebGL - High-Performance Graphics

✍️ Authors

  • SVELTE Development Team - Framework Architecture & Implementation
  • Contributing Researchers - Theoretical Foundations & Validation

See the list of contributors who participated in this project.

πŸŽ‰ Acknowledgements

  • Theoretical foundations inspired by work in differential geometry and information theory
  • Visualization techniques adapted from cognitive science and neuroscience research
  • Community contributions from researchers in AI safety and interpretability
  • Open source libraries and frameworks that make this work possible

Citation:

@software{svelte_framework,
  title={SVELTE: Symbolic Vector Entropy & Latent Tensor Excavation Framework},
  author={SVELTE Development Team},
  year={2025},
  url={https://github.com/svelte-framework/svelte}
}

License: MIT - see LICENSE file for details.

Project Link: https://github.com/svelte-framework/svelte

Top categories

svelte logo

Need a Svelte website built?

Hire a professional Svelte developer today.
Loading Svelte Themes