Advanced Model Analysis & Interpretability Suite for Neural Language Models
Non-destructive extraction and interpretation of computational structures from quantized language models
SVELTE (Symbolic Vector Entropy & Latent Tensor Excavation) is a comprehensive framework for analyzing and interpreting neural language models through non-destructive tensor analysis. The framework extracts symbolic computational structures from quantized models, enabling deep understanding of model internals through entropy analysis, symbolic mapping, and multi-dimensional visualization.
Built on axiomatic foundations of latent symbolic encoding and structural invariance, SVELTE provides researchers and practitioners with tools to excavate the hidden computational archaeology of modern language models.
Hardware Requirements:
Software Dependencies:
Python 3.8+
PyTorch 2.0+
NumPy 1.20+
SciPy 1.7+
Plotly 5.5+
git clone https://github.com/svelte-framework/svelte.git
cd svelte
pip install -r requirements.txt
pip install -e .
python main.py --help
Full Pipeline Analysis:
python main.py --model models/your-model.gguf --pipeline --output results/
Selective Module Analysis:
python main.py --model models/your-model.gguf --modules parser,entropy,symbolic --headless
Interactive Mode:
python main.py
# Follow interactive prompts to select models and analysis options
from src.gguf_diagnostic_scanner import main as pipeline_main
from src.tensor_analysis.gguf_parser import GGUFParser
from src.tensor_analysis.entropy_analysis import EntropyAnalysisModule
# Parse model
parser = GGUFParser("path/to/model.gguf")
parser.parse()
# Analyze entropy
entropy_module = EntropyAnalysisModule(parser.tensor_field)
entropy_maps = entropy_module.compute_entropy()
# Run full pipeline
pipeline_main()
Start the web server:
python main.py serve --port 8080
Navigate to http://localhost:8080
for interactive analysis.
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β Tensor β β Entropy β β Symbolic β
β Excavation βββββΆβ Analysis βββββΆβ Mapping β
β Module (TEM) β β Module (EAM) β β Module (SMM) β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β β β
βΌ βΌ βΌ
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β Cognitive β β Meta- β β Attention β
β Cartography β β Interpretation β β Topology β
β Module (CCM) β β Module (MISM) β β System (ATS) β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
GET /api/v1/models # List available models
POST /api/v1/models # Upload new model
GET /api/v1/models/{id}/analyze # Start analysis
GET /api/v1/analyses/{id}/status # Check analysis status
GET /api/v1/analyses/{id}/results # Retrieve results
GET /api/v1/symbols # Access pattern library
POST /api/v1/visualizations # Generate visualization
# analysis.yaml
analysis:
modules: [parser, entropy, symbolic, attention]
resolution: 512
threads: 0 # auto-detect
memory_limit: 0 # auto-detect
output_format: [json, visualization, report]
visualization:
engine: plotly
interactive: true
dimensions: 3
color_scheme: viridis
We welcome contributions! Please see our Contributing Guidelines for details.
git checkout -b feature/amazing-feature
pip install -r requirements-dev.txt
pytest tests/
git commit -m 'Add amazing feature'
git push origin feature/amazing-feature
See the list of contributors who participated in this project.
Citation:
@software{svelte_framework,
title={SVELTE: Symbolic Vector Entropy & Latent Tensor Excavation Framework},
author={SVELTE Development Team},
year={2025},
url={https://github.com/svelte-framework/svelte}
}
License: MIT - see LICENSE file for details.
Project Link: https://github.com/svelte-framework/svelte